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Abstract

This paper presents a prototype of a computer-aided design (CAD) diagnostic system for mammography screening
to automatically detect and classify microcalcifications (MCCs) in mammograms. It comprises four modules. The first
module, called the Mammogram Preprocessing Module, inputs and digitizes mammograms into 8-bit images of size
2048×2048, extracts the breast region from the background, enhances the extracted breast and stores the processed
mammograms in a data base. Since only clustered MCCs are of interest in providing a sign of breast cancer, the
second module, called the MCCs Finder Module, finds and locates suspicious areas of clustered MCCs, called regions
of interest (ROIs). The third module, called the MCCs Detection Module, is a real time computer automated MCCs
detection system that takes as inputs the ROIs provided by the MCCs Finder Module. It uses two different window
sizes to automatically extract the microcalcifications from the ROIs. It begins with a large window of size 64×64 to
quickly screen mammograms to find large calcified areas, this is followed by a smaller window of size 8×8 to extract
tiny, isolated microcalcifications. Finally, the fourth module, called the MCCs Classification Module, classifies the
detected clustered microcalcifications into five categories according to BI-RADS (Breast Imaging Reporting and Data
System) format recommended by the American College of Radiology. One advantage of the designed system is that
each module is a separate component that can be individually upgraded to improve the whole system. Despite that
it is still is a prototype system a preliminary clinical evaluation at TaiChung Veterans General Hospital (TCVGH) has
shown that the system is very flexible and can be integrated with the existing Picture Archiving and Communications
System (PACS) currently implemented in the Department of Radiology at TCVGH. © 2000 Elsevier Science Ireland
Ltd. All rights reserved.
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1. Introduction

In its January 14, 1991 issue, Time
Magazine published a cover story: One
American Woman in Ten Will Get Breast
Cancer, Why and What Can Be Done [1]?
Since then, the rate has risen. According to
recent statistics [2], one woman in every eight
in the United States will develop breast can-
cer at some point during their lifetime. A
1987 study showed that for women whose
tumors were discovered early by mam-
mograms, the 5-year survival rate was about
82% as opposed 60% for a control group [3].
However, while eight out of ten masses de-
tected by mammography turn out to be false
alarms, this technique may miss as many as
9% of actual tumors. The cause of this may
be largely attributed to the poor quality of
mammograms. Even high quality film can
only capture gross variations. For young
women whose breasts tend to be dense, firm
and cluttered with natural fibrous masses,
spotting tumors using standard mammogra-
phy is generally difficult. Recently, the Amer-
ican Cancer Society has recommended that
all women between the ages of 40 and 49
should get their mammograms every 2 years
and every year thereafter. If this recommen-
dation is followed, radiologists will be re-
quired to examine 170 million new
mammograms each year and the workload
will overwhelmed. In this case, radiologists
must reach their verdicts in a few minutes.
For example, as pointed out in [2] by Laurie
Fajardo with the University of Arizona’s
Tucson Breast Cancer Center, each radiolo-
gist in the center must scrutinize about 75
mammograms per day with only a few reveal-
ing abnormalities. In a recent survey [3], it

was pointed out that one of the major prob-
lems expected with any mammography
screening program is that it would be the
requirement of interpreting a large volume of
mammograms produced. Due to a shortage
of trained radiologists it is difficult to main-
tain interest and concentration when only a
small number of occasional abnormalities are
encountered. With advances of computer
technology, radiologists have an opportunity
to improve their diagnosis with the aid of
computer capabilities that can enhance image
quality, select regions of interest, detect suspi-
cious spots, help to develop interpretive tools,
etc. [4,5]. Mammography is a potential area
where advanced image processing can im-
prove the odds of mammograms in detecting
breast cancer early.

Microcalcifications generally present an
early sign of breast cancer. Past screening
studies showed that 90% of impalpable in situ
ductal carcinomas and 70% of impalpable
minimal carcinomas were visible as microcal-
cifications alone [6]. Accordingly, detecting
impalpable malignant calcifications within
the breast can improve survival rate of breast
cancer patients. Mammography screening re-
mains an effective technique for early breast
cancer detection and cannot be replaced by
other diagnostic modalities such as sonogra-
phy, thermography and MRI [7]. Calcifica-
tions are tiny clustered particles and probably
the smallest structures that can be identified
on mammograms and are best visualized us-
ing high-resolution imaging techniques or di-
rect radiological magnification. In order to
assist radiologists in detecting such microcal-
cifications, developing reliable computer
aided diagnostic (CAD) systems for microcal-
cifications detection is highly desirable. Al-
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though early reports from 1960s suggested
that clustered microcalcifications associated
with benignancy and malignancy usually
have distinct characteristics, however, more
recent studies in the 1980s involving a large
number of cases indicated that these charac-
teristics do considerably overlap. As a result,
most radiologists encourage biopsies, even
when only 20–30% of cases proved to be
cancer [8]. So, it becomes a challenge for
radiologists to not only recognize the pres-
ence of these tiny particles, but also to assess
the likelihood of malignancy in order to
avoid unnecessary biopsies [9]. Therefore, an
important issue is how to reduce the false-
positive biopsy rate for mammographically
detected abnormalities such that the number
of mammography-generated biopsy for be-
nign lesions can be substantially decreased.

Despite the fact that the great majority of
breast calcifications found in mammograms
are clearly benign, difficulties in interpreta-
tion arise primarily when both benign and
malignant lesions have similar mammo-
graphic appearances. Some experienced radi-
ologists take advantage of fine-resolution
images and their interpretative expertise to
replace biopsy for those calcifications un-
likely to be malignant. However, for less
trained radiologists, experience comes with
extensive practice. One way to alleviate this
dilemma is to use CAD systems as a second
reader to improve the diagnostic accuracy
[10]. Over the past years, many CAD al-
gorithms and methods have been proposed
for detection and segmentation of microcal-
cifications [11–24], such as global and local
thresholding techniques, artificial neural net-
work and wavelet approaches. However, each
method has its own strengths and weak-
nesses. This is mainly due to the nature of
mammographic characteristics and appear-
ances. In order for a CAD systems to be
diagnostically useful in detection and segmen-

tation of microcalcifications, it is very impor-
tant to design and develop effective
preprocessing techniques to smooth inhomo-
geneous background and remove structured
noise that is caused by parenchyma tissues
and texture variations.

In this paper, a prototype of a computer-
aided design mammography screening system
is proposed for detection and classification of
microcalcifications (MCCs). The system is
made up of four modules, each of which is
designed for a particular task. The first mod-
ule is called the Mammogram Preprocessing
Module that takes a mammogram and digi-
tizes it into an 8-bit image of size 2048×
2048. It then extracts the breast region from
the mammogram, enhances the extracted
breast image and stores the processed mam-
mogram along with the original unprocessed
mammogram in a database of the system for
future reference. Since only clustered MCCs
provide useful diagnostic information about
malignancy, the second module is designed to
find and locate suspicious clusters of MCCs
and then segment these clustered MCCs from
the background as regions of interest (ROIs)
that will be used for further MCCs detection.
So, it is called the MCCs Finder Module. As
soon as ROIs are identified, they will be fed
to the third module whose task is to detect
MCCs in ROIs. Therefore, it is called the
MCCs Detection Module and is a real-time
processing system that uses two different win-
dow sizes to extract MCCs. It begins with a
large window of size 64×64 to quickly
screen mammograms to find large calcified
areas. This is followed by a smaller window
of size 8×8 to extract small and tiny MCCs.
Finally, the fourth module is the MCCs Clas-
sification Module that classifies each of the
segmented clustered MCCs into five cate-
gories, ‘negative’ (no further operation), ‘be-
nign finding’ (MCCs found to be negative),
‘probably benign finding’ (short interval fol-
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low-up suggested), ‘suspicious abnormality’
(biopsy should be considered) and ‘highly
suggestive of malignancy’ (appropriate action
should be taken) to represent different stages
of MCCs as suggested in [25].

Despite that individual modules have been
reported previously in various conferences
[26–30], this paper is the first to present a
prototype of a mammography screening sys-
tem that integrates all the four modules as a
single entity for clinical applications. One of
strengths of the proposed system is its open
architecture where each module is an object-
oriented, plug-in component and can be up-
graded individually to improve the whole
CAD system. Another is that the prototype
system can be included in the Picture Archiv-
ing and Communication System (PACS) cur-
rently implemented in TaiChung Veterans
General Hospital (TCVGH), Taichung, Tai-
wan, Republic of China [31,32]. This inclu-
sion allows radiologists to have easy access to
the system and assist them in making their
diagnosis. In order to evaluate the designed
system, a preliminary study was conducted
using the public Nijmegen database provided
by the Department of Radiology at the Ni-
jmegen University Hospital, Netherlands.
These experimental results were further used
to build up the TCVGH database and im-
prove the system.

In recent reports [33,34], many commercial
companies such as R2 Technology, Inc., GE,
Hewlett Packard Co., MedDetect/Lockheed
Martin, Siemens, Sterling Diagnostic Imag-
ing, have invested their money and resources
in developing and designing a mammography
screening system for clinical applications. In
particular, R2 Technology, Inc. produces a
system for MCCs and mass detection, named
ImageChecker M1000 that recently received
approval from the US Food and Drug Ad-
ministration (FDA) in June 1998 [34]. Previ-
ously, it received CE Mark certification from

the European Union. The system was devel-
oped in collaboration with the Department of
Radiology at the University of Chicago. It
cannot be used for diagnosis, but can only be
used for MCCs and mass detection. Thus, it
provides a second opinion for radiologists.
This system corresponds to the third module,
MCCs Detection Module, in our system. Al-
though there is no proprietary information
available about the R2 system except for
their recently awarded patent [35], a series of
publications by this group [17–20] suggests a
lead that the system might have been devel-
oped based on the model referred to as shift-
invariant artificial neural networks [35,36]
that was also based on Neocognitron [37].
Coincidentally, the Shape Cognitron [38] pro-
posed in the clustered MCCs Classification
Module in our system was first envisioned in
[39] and also designed based on Neocogni-
tron and Tricognitron in [40,41]. To the au-
thors’ best knowledge, most of such
commercial efforts are devoted to the detec-
tion of MCCs. The proposed system extends
its ability beyond only the MCCs detection.
By integrating four modules into a fully com-
puter-automated system. The technique de-
veloped for each module is unique in the
sense that it is developed to perform a spe-
cific data processing. The Mammogram Pre-
processing Module implements a block
region method in conjunction with the K-
means cluster-based thresholding to segment
the breast tissue from a mammogram. It is
then followed by the MCCs Finder Module
that makes use of the blanket method to find
suspicious areas for clustered MCCs. As soon
as the clustered MCCs are located, the MCCs
Detection Module applies a sequence of en-
hancement techniques and entropy-based
thresholding methods to detect MCCs. Fi-
nally, the detected MCCs are classified by the
MCCs Classification Module where the use
of Shape Cognitron in this classification
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module is a novel approach. It is particularly
designed to capture geometric orientations
and shape curvatures of MCCs, which are
crucial features in classification. The potential
and usefulness of the Shape Cognitron is
further demonstrated in detection of venous
beading in retinal images [42].

2. System and architecture

Due to the rapid growth in number of
women suffering from breast cancer in Tai-
wan, the Department of Radiology in
TCVGH began an initiative in 1995 to under-
take a task to design a mammography screen-
ing system for the purpose of clinical trials
and training. The system presented in this
section is a result of a multi-year effort
devoted to this development and its block
diagram is depicted in Fig. 1. It is comprised
of four modules, Mammogram Preprocessing

Module, MCCs Finder Module, MCCs De-
tection Module, and MCCs Classification
Module. Each module of the system was
originally developed individually in a differ-
ent phase. When one module was developed,
it was also evaluated by radiologists at
TCVGH and other hospitals for future im-
provement. For example, the MCCs Detec-
tion Module was first developed [26,27], then
followed by the MCCs Classification Module
[28,29] and MCCs Finder Module [29,30].
Finally, the Mammogram Preprocessing
Module was incorporated for data storage
and future data retrieval. The structure of the
system is particularly designed for flexibility.
It enables users to include new modules if
there is a need. In addition, each module can
also be upgraded and improved individually
and separately. In what follows, each module
of the system is described with details in
[26–30,38,39].

Fig. 1. A block diagram of the mammography screening system.
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2.1. First module Mammogram Preprocessing
Module

The purpose of the first module is to digi-
tize mammograms and preprocess the digi-
tized mammograms for enhancement and
breast region extraction.

2.1.1. Mammogram digitization
First of all, all mammograms are digitized

into an 8-bit image of size 2048×2048 by a
Truvel film digitizer made by Vidar System
Corporation with 260 DPI (approximately
0.1 mm/pixel).

2.1.2. Breast region extraction
The need of breast region extraction arises

from several main reasons. One is that ap-
proximately or more than one-third of a
mammogram is dark breast background,
which provides very little information for
diagnosis. Additionally, for the purpose of
storage and fast retrieval this background
should not be included for diagnosis. An-
other is computational efficiency. Since the
size of a mammogram is generally 16 times as
large as CT and MR images, it will be highly
desirable if the dark breast background can
be removed while retaining only the breast
region for future data processing. More im-
portantly, in order to make the system more
efficient, extracting regions of interest (ROIs)
is the first step of computer automation. In
mammography screening, the breast is the
region in which radiologists are interested.
So, the first module of the system is designed
for this purpose where a region growing
method is developed to extract the breast
region and is described as follows.

2.1.2.1. Breast region extraction algorithm.
1. Divide a mammogram into pq blocks of

size M×N, {B11, B12, ··· ,Bpq}.

2. Use block region growing method to elim-
inate background.
2.1. For each block Bij, compute its mean

mij, variance s ij
2 and energy function

defined by Eij= (mij)2+s ij
2.

2.2. Begin with the block with smallest
energy, then use the four-neighbor
connectivity rule to grow a region
with a prescribed a tolerance To.

2.3. The region obtained by step (2.2)
will be considered to be the breast
background and will be eliminated.

3. Apply K-means clustering-based
thresholding method to extract breast
region.

After step 2, a silhouette of the breast
was segmented. But it only provides an
outline and a rough estimate of the breast
region. In this step, a K-means clustering-
based thresholding technique developed in
[43] is applied to further refine and
smooth the estimated breast region ob-
tained by step 2, denoted by BREAST.
Let Min(To) and Max(To) be the smallest
and largest means of all image blocks in
BREAST. We also let Mid(To)=
(Min(To)+Max(To))/2 be the mid-value
between Min(To) and Max(To). Using
these three values Min(To), Max(To) and
Mid(To) as seeds for clustering, three
classes, denoted by {C0, C1, C2} are gener-
ated with C0, C1, C2 corresponding to
Min(To), Mid(To) and Max(To) respec-
tively. In this case, we assume that C2, C1

and C0 represent the breast region, breast
boundary and breast background within
BREAST respectively. Suppose that mi is
the mean of class Ci. The desired
threshold value m to extract the breast
region can be selected by m= (m0+m1)/2.

In step 2 of the breast extraction al-
gorithm, a block region growing method is
used to eliminate the breast background. It
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requires a seed block to start with. Two
selections can be made for this purpose. One
is to select a block that has the lowest aver-
age intensity. This selection is based on the
assumption that the darkest image block
must be part of the breast background. Un-
fortunately, this is not always the case with
lepto-breasts in which the darkest block may
occur within the breast region. Under this
circumstance, using the block with averaged
darkest intensity as a starting block will not
work. A second selection is to pick one of
four corner blocks of a mammogram as a
seed block. Although a mammogram may
have a transparent fringe when it is scanned,
this fringe generally produces high gray level
values and can be easily detected. In this case
the corner on the opposite side can be se-
lected as a seek block. In our system, the
latter was used to select a seed block and the
threshold To for region growing was set to
To=15.

2.2. Second module: MCCs Finder Module

Detection of MCCs is crucial to success in
detecting early breast cancer and has been
investigated extensively [11–24,26–30]. How-
ever, in most cases, the regions of interest
(ROIs) for possible MCCs are preselected
manually by radiologists. Furthermore, from
a diagnostic point of view, only clustered
MCCs are of interest. This is because single
MCC blobs or sparse MCCs are generally
caused by breast tissues and noises, and do
not provide much useful information for di-
agnosis. In order to make the system fully
computer automated, a second module is in-
troduced to the system with the goal finding
and locating areas consisting of possible clus-
tered MCCs. In the following, we describe a
process, referred to as blanket method, that
can be used to automatically find and locate
ROIs for possible MCCs.

The blanket method was originally devel-
oped by Mandelbrot [44] to estimate the
length of an irregular curve and was further
extended by Peleg [45] to estimation of a
surface area. Let [(x,y),I(x,y)] be the surface
area of an object at (x,y) with the gray level
I(x,y). The surface area can be estimated by
measuring the volume between an upper
blanket, Ur(x,y) defined by

Ur(x,y)

=max
!

Ur−1(x,y)+1, max
�(s,t)− (x,y)�51

Ur−1(s,t)
"

(1)

and a lower blanket, Lr(x,y) defined by

Lr(x,y)

=max
!

Lr−1(x,y)−1, min
�(s,t)− (x,y)�51

Lr−1(s,t)
"
(2)

where U0(x,y)=L0(x,y)=I(x,y) and r is a
distance above or below the surface and is a
scaling factor of the fractal dimension. Peleg
defined the surface area V(r) as the half of
the volume increment by

V(r)=
1
2

%
(x,y)

{[Ur(x,y)−Ur−1(x,y)]

+ [Lr−1(x,y)−Lr(x,y)]} (3)

Since V(r) is proportional to r, it can be
represented as

V(r)=kr2−D. (4)

Using Eq. (4) we can calculate the fractal
dimension D based on logV(r) versus log r as
follows.

D=2−
log V(r)− log k

log r
(5)
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The volume V(r) can be viewed as an image
surface with the variance specified by the
scaling factor r while D can be used as a
measure of image texture characterization.

It should be noted from Eq. (5) that the D
is not directly related to r because the texture
characteristics are weakly associated with r.
The magnitude of r only determines the ex-
tent of the area covered by the image texture.
For example, clustered MCCs usually have
high gray gradients and variances in texture.
In this case, D provides an important indica-
tion of the existence of clustered MCCs.
More importantly, a cluster of MCCs
matches the fractal property, which is directly
determined by the scaling factor r of the
fractal model. Because of that, two window
sizes, 64×64 and 8×8 are used in this mod-
ule to detect and find suspicious areas of
clustered MCCs, referred to as regions of
interest (ROIs). Using the 64×64 window
enables users to quickly screen mammograms
to find large calcified areas, while the 8×8
window is used to detect small, isolated mi-
crocalcifications. For example, the 64×64
window using the fractal dimension D with
r=16 can detect the size of the area of
clustered MCCs up to 128×128 pixels. How-
ever, a small lesion within a large window
may sometimes fail to satisfy the fractal
property. In this case, they may be passed
and go undetected by a large window such as
64×64. So, the use of a small window en-
sures that such small lesions will meet the
fractal property and can be extracted by the
fractal dimension D. Recently, the concept of
the fractal dimension D was also found to be
very useful for CT liver image classification
where it was used to detect three different
types of liver regions, normal liver, hepatoma
and liver boundary [46]. For details of the
application and implementation of factal di-
mension we refer to reference [46].

2.3. Third module: MCCs Detection Module

The goal of developing the fractal dimen-
sion D in MCCs Finder Module is to find
and locate suspicious clustered MCCs and to
provide radiologists with ROIs that require
their attention. But these ROIs are not neces-
sarily all calcified. In particular, some de-
tected pixels may be noise or breast tissues.
So, the next step is to extract possible MCCs
from these ROIs for diagnosis. One challenge
presented to this module is that MCCs are
embedded in or obscured by the inhomoge-
neous background within the breast. So, in
order to cope with this difficulty, the MCCs
Detection Module is developed for this
purpose.

The techniques described below are devel-
oped based on the assumption that the gray-
level intensity of calcified pixels is generally
brighter than that of uncalcified pixels. How-
ever, two situations generally occur in detec-
tion of MCCs. One is that calcified pixels
themselves already have low intensities. The
other is that even when calcified pixels have
higher intensities, their neighboring pixels
may also have high intensities so that the
relative contrast of these calcified pixels is
significantly reduced. Therefore, as a first
step the module enhances the low intensity of
calcified pixels. This is followed by a step that
improves the low contrast of enhanced cal-
cified pixels. Finally, the third step is to re-
move suppressed undesired high intensity
uncalcified pixels, particularly noise pixels us-
ing a Gaussian filter. Since the resulting
Gaussian filtered images are generally gray
scaled, MCCs can only be detected by visual
inspection. Therefore, thresholding is neces-
sary to produce binary images that show the
locations of MCCs. The implementations of
MCCs Detection Algorithm is given as
follows.



S.-K. Lee et al. / International Journal of Medical Informatics 60 (2000) 29–57 37

2.4.1. Gradient enhancement
Let I(x,y) be the gray level of the pixel at

the spatial location(x,y) of a mammogram.
We first find its gradient g(x,y) given by

g(x,y)=
1
9

%
1

i= −1
%
1

j= −1
�I(x+ i,y+ j )−I(x,y)�,

(6)

then add g(x,y) to I(x,y)

I1(x,y)=I(x,y)+g(x,y). (7)

so that I(x,y) is enhanced by I1(x,y).

2.4.2. Contrast enhancement
While Eq. (7) enhancing intensities of gray

levels it does not necessarily increase gray
level contrast, in this case a contrast enhance-
ment technique is employed in the second
stage. The idea is to use a 3×3 window to
average eight-neighbor connectivity pixels of
every pixel to reduce the intensities of uncal-
cified pixels so that the contrast can be in-
creased. This averaging processing can be
repeatedly applied as many times as de-
scribed in Eq. (8) until a desired outcome is
achieved.

mm(x,y)=
1
9

%
1

i= −1
%
1

j= −1
mm−1(x+ i,y+ j )

(8)

The superscript m in Eq. (8) indicates the
number of times of the averaging processing
was performed. The contrast enhancement
process scales the mean calculated in Eq. (8)
by L−1 where L is the highest gray level
used in the mammogram, then it is multiplied
to the left with the image produced by the
first stage preprocessing, I1(x,y). The resul-
tant image I2(x,y) is given by

I2(x,y)=
mm(x,y)
L−1

I1(x,y). (9)

2.4.3. Suppression of interference and noise
In this stage, a Gaussian filter is applied to

eliminate noisy and interfering pixels that can
be caused by breast tissues. It is done by
subtracting a Gaussian-filtered image,
Gs�I2(x,y) from I2(x,y), i.e.

I3(x,y)=I2(x,y)−Gs�I2(x,y) (10)

where Gs is a Gaussian filter with S.D. s and
� is the convolution operator.

2.4.4. Segmentation of MCCs from the
background by entropy-based thresholding

After step 3 is completed, the image quality
of the mammograms is enhanced. However,
one problem remains. The processed mam-
mograms are gray scale and still require vi-
sual inspection of radiologists. In order for a
system to be fully computer automated and
not require human intervention, an auto-
matic segmentation method is needed to seg-
ment detected MCCs from the background.
This step is crucial in detection of MCCs.
Many thresholding techniques have been pro-
posed in the literature [47]. In this module,
the thresholding methods used in this step are
entropy-based thresholding methods [48–50],
which were shown to perform better in terms
of capturing the characteristics of MCCs
than other popular thresholding methods
such as Otsu’s method [51].

Entropic thresholding is a technique that
adopts entropy as a criterion to threshold an
image. The concept of entropy has been
widely used in data compression to measure
information content of an information
source. Suppose that an L-symbol source X is
governed by a probability distribution p=
(p1, ···, pL). The information generated by the
source X can be described by its entropy
H(X) defined as follows.

H(X)= − %
L

j=1
pj log pj. (11)
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Fig. 2. Four quadrants of a co-occurrence matrix di-
vided by a threshold t.

It should be noted that the co-occurrence
matrix defined above considers only the pixels
on the right and bottom transitions since it was
found that including the pixels on the left and
top transitions does not provide significant
information and improvement. By normaliz-
ing the total number of transitions in the
co-occurrence matrix, a desired transition
probability from gray level i to j is obtained by

pij=
tij

%
L−1

k=0
%

L−1

l=0
tkl

(14)

Assume that t is a threshold used to
threshold an image. Then t partitions the
co-occurrence matrix defined by Eq. (13) into
four quadrants, namely, A, B, C, and D, shown
in Fig. 2. These four quadrants can be further
grouped into two classes. If we assume that
pixels with gray levels above the threshold are
assigned to the foreground (objects), and those
equal to or below the threshold are assigned
to the background quadrants A and C corre-
spond to local transitions within background
and foreground respectively, whereas quad-
rants B and D represent transitions across
boundaries between background and fore-
ground. The probabilities associated with each
quadrant are then given by

PA
t = %

t

i=0
%
t

j=0
pij, PB

t = %
t

i=0
%

L−1

j= t+1
pij,

PC
t = %

L−1

i= t+1
%
t

j=0
pij, PD

t = %
L−1

i= t+1
%

L−1

j= t+1
pij

(15)

The probabilities in each quadrant can be
further obtained by so called ‘cell
probabilities’,

Since an image can be viewed as an informa-
tion source with the probability distribution
given by its gray-level image histogram, the
information contained in the image can be
characterized by the entropy of the histogram.
Pun and Kapur et al. used this concept to
derive entropic thresholding methods.

Given a digital image of size M×N with L
gray levels denoted by G={0, 1, ···, L−1}, let
f(x,y) be the gray level of the pixel at the
spatial location (x,y). Then the image can be
represented by a matrix F= [ f(x,y)]M×N. A
co-occurrence matrix of an image is an L×L
square matrix, denoted by W= [tij ]L×Lwhose
elements are specified by the numbers of tran-
sitions between all pairs of gray levels in
G={0, 1, ···, L−1} in a particular way. A
widely used co-occurrence matrix is an asym-
metric matrix, which only considers the gray
level transitions between two adjacent pixels.
More specifically, let tij be the (i, j )th element
of the co-occurrence matrix W. Following the
definition given in [48,49],

tij= %
M

m=1
%
N

n=1
dmn (12)

where

dmn=1 if f(m,n)= i and f(m+1,n)= j

and/or

f(m,n)= i and f(m,n+1)= j

=0; otherwise

>
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pij�A
t =

pij

PA
t , pij�B

t =
pij

PB
t , pij�C

t =
pij

PC
t , pij�D

t =
pij

PD
t

(16)

which are probabilities conditioning on a spe-
cific quadrant.

Three definitions can be derived based on
the cell probabilities given by Eqs. (4) and
(5), each of which yields a different method.

2.4.5. Local entropy (LE)
Since quadrant A and quadrant C contain

the local transitions from background to
background (BB) and objects to objects (FF)
respectively, the local entropy of BB, denoted
by HBB(t) and local entropy of FF, denoted
by HFF(t) can be defined respectively as
follows.

HBB(t)= − %
t

i=0
%
t

j=0
pij�A

t log pij�A
t (17)

HFF(t)= − %
L−1

i= t+1
%

L−1

j= t+1
pij�C

t log pij�C
t (18)

By summing up the local within-class tran-
sition entropies of the foreground and the
background, a second-order local entropy,
denoted by HLE(t) was derived by N.R. Pal
and S.K. Pal [48]

HLE(t)=HBB(t)+HFF(t). (19)

The LE method proposed by Pal and Pal is
the one that selects a threshold, tLE maximiz-
ing HLE(t) defined by Eq. (19) over t, namely,

tLE=arg
!

max
t�G={0,1,···,L−1}

HLE(t)
"

(20)

2.4.6. Joint entropy (JE)
Alternatively, quadrant B and quadrant D

provides edge information about transitions
from background to foreground (BF) and
foreground to background (FB). In analogy
with LE, another second-order entropy
method, called joint entropy (JE) was also
derived by N.R. Pal and S.K. Pal by finding

HJE(t), the sum of the entropy HBF(t) result-
ing from quadrant B, and the entropy HFB(t)
from quadrant D, which are defined as
follows.

HBF(t)= − %
L−1

i= t+1
%
t

j=0
pij�B

t log pij�B
t (21)

HFB(t)= − %
t

i=0
%

L−1

j= t+1
pij�D

t log pij�D
t (22)

HJE(t)=HBF(t)+HFB(t)). (23)

Similarly, a method finding tJE

tJE=arg
!

max
t�G={0,1,···,L−1}

HJE(t)
"

(24)

that the maximizes HJE(t) defined by Eq. (24)
over t is called JE method, which is the
second algorithm developed by N.R. Pal and
S.K. Pal [48].

2.4.7. Global entropy (GE)
The global entropy HGE(t) is simply the

sum of the local entropy HLE(t) and the joint
entropy HJE(t), i.e.

HGE(t)=HLE(t)+HJE(t)

=HBB(t)+HFF(t)+HBF(t)+HFB(t).

(25)

A value, tGE that maximizes HGE(t) defined
by Eq. (25) over t,

tGE=arg
!

max
t�G={0,1,···,L−1}

HGE(t)
"

(26)

is called the global entropy threshold.
The three entropic thresholding methods

described above do not take into account the
thresholded images. Relative entropy-based
thresholding described below takes care of
this issue. Let two sources with L symbols be
described by probability distributions p=
(p1, ···, pL) and h= (h1, ···, hL) respectively.
The relative entropy between p and h (or the
entropy of h relative to p) denoted by J(p;h)
is defined by [52]
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J(p;h)= %
L−1

j=0
pj log

pj

hj

. (27)

So, the smaller the relative entropy J(p;h), the
more closer the two sources in terms of their
probability distributions p and h.

Now if we assume that {pij} and {hij
t }

represent the co-occurrence matrices of an
original image and an image thresholded by
t. respectively. Then the relative entropy be-
tween {pij} and hij

t is defined by

J({pij};{hij
t })=%

i, j

pij log
pij

h ij
t . (28)

By minimizing Eq. (28) over the threshold
value t�{0, 1, ···, L−1} three relative en-
tropic thresholding methods similar to the
above entropic thresholding methods, called
local relative entropy (LRE), joint relative
entropy (JRE) and global relative entropy
(GRE) can be also derived as follows.

JLRE({pij};{hij
t })= %

(i, j )�BB@FF

pij log
pij

h ij
t (29)

JJRE({pij};{hij
t })= %

(i, j )�BF@FB

pij log
pij

h ij
t . (30)

JGRE({pij};{hij
t })= %

L−1

i=0
%

L−1

j=0
pij log

pij

h ij
t (31)

The LRE, JRE and GRE are thresholding
methods that find thresholds minimizing Eqs.
(29)–(31) respectively. Namely,

tLRE=arg
!

min
t�G={0,1,···,L−1}

JLRE({pij};{hij
t })

"
(32)

tJRE=arg
!

min
t�G={0,1,···,L−1}

JRRE({pij};{hij
t })

"
(33)

tGRE=arg
!

min
t�G={0,1,···,L−1}

JGRE({pij};{hij
t })

"
.

(34)

These three relative entropies can be
viewed as the counterparts of LE, JE and GE

in entropic thresholding. Nevertheless, both
entropic thresholding and relative entropic
thresholding perform differently and have
different advantages. So, in order to allow
radiologists to make various comparison
among different thresholding methods, this
module includes three entropic thresholding
methods (LE,JE,GE), three relative entropic
thresholding methods (LRE,JRE,GRE), one
popular threshold method (Otsu’s method
[51]) plus a manual threshold adjustment
(that allows radiologists to be able to manu-
ally adjust the threshold value themselves).
For detailed treatments of these methods we
refer to references [48–50].

2.5. Fourth module: MCCs Classification
Module

After clustered MCCs have been identified
by the MCCs Detection Module, the follow-
up task is classification of the segmented
clustered MCCs. In this section, we introduce
a classification module, which is based on a
neural network-like shape recognition system,
called Shape Cognitron (SC). The SC was
previously developed for classification of
MCCs in [27,39] and later used for venous
beading detection in retinal images [42]. The
structure of SC is given by Fig. 3. It has an
input unit U0, two simple layer-complex lay-
ers combined units, referred to as (S1,C1)
(called shape orientation extraction unit) and
(S2,C2) (called shape feature extraction-clas-
sification unit), and one 3-D figure layer,
called shape orientation display layer lying
between (S1,C1) and (S2,C2) units. Each of
the units is briefly described as follows. We
refer details to refs. [38,42].

2.5.1. Shape Cognitron (SC)
Shape Cognitron (SC) is derived from

Tricognitron and Fukushima’s Neocognitron.
It was particularly designed to classify clus-
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tered microcalcifications into malignancy and
benignancy using a set of shape features it
generates. It is known that malignant clus-
tered microcalcifications generally have irreg-
ular shapes as opposed to round shape or
egg-shaped benign clustered microcalcifica-
tions. SC captures the shape curvatures of
clustered microcalcifications and provides a
crucial indication of malignancy.

The SC is a neural network-like system and
consists of two major components, each of
which has two layers, called simple layer and
complex layer and a mid-layer between them,
called 3-D figure layer. The first component
is similar to that used in Neocognitron, but it
uses 20 orientation spatial patterns to specify
eight degree spatial patterns, 0=360°: East
(E), 45°: Northeast (NE), 90°: North (N),
135°: Northwest (NW), 180°: (West), 225°:
Southwest (SW), 270°: South (S), 335°:
Southeast (SE). It implements a two-layer
operation, a simple layer denoted by layer S1

and a complex layer denoted by layer C1.
Layer S1 contains 20 cell planes of size N×N
resulting from 20 orientation spatial patterns

operating on the input pattern. Layer C1

contains eight cell planes of size N×N ob-
tained by merging 20 cell planes in layer S1

that represent 20 orientation spatial patterns.
They result from different weight assignments
generated by two masking processes using the
20 orientation spatial patterns in layer S1 and
a particularly designed merging procedure in
layer C1. The layer following the first compo-
nent is 3-D figure layer. It is a feature extrac-
tion-display layer that extracts and stores the
information of the shape orientations of an
input pattern in the third dimension. It dis-
plays the input pattern as a 3-D figure using
the numeric values generated in layer C1 as
the elevation of the pattern to represent eight
different degrees in the third dimension. The
second component can be viewed as a joint
feature selection and classification system
that is made up of a feature selection layer,
layer S2, which generates a desired set of
shape features from the 3-D figure layer and
a classification layer, layer C2, which employs
a probabilistic neural network (PNN) [53] as
a classifier with the shape features produced

Fig. 3. Structure of shape cognition.
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by layer S2 as inputs. The details can be
summarized as follows.

The input unit U0 takes an input pattern of
size N×N, which may vary with applica-
tions. In our case, the input patterns are
clustered MCCs of size 256×256 produced
by the MCCs Detection Module. The (S1,C1)
unit contains a simple layer S1 followed by a
complex layer C1. It is a shape information
extraction unit that extracts geometric shape
orientations of an input pattern, then con-
verts them into numeric values for computer
processing. The idea of using (S1,C1) is simi-
lar to that used in Neocognitron proposed in
[37] and Tricognitron in [40,41]. Layer S1

uses a set of 20 orientation spatial patterns
(eight 2×2 spatial patterns numbered from 1
to 8 and 12 3×3 spatial patterns numbered
from 9 to 20) shown in the first column of
Fig. 4(a) operating on the input pattern to
capture eight degree spatial patterns as
shown in the top row of Fig. 4(a) that repre-
sent eight different degrees: B45° (i.e. de-
grees less than B45°), 45°, 90°, 135°, 180°,
225°, 270° and 0=360° in the second top
row. The pixel labeled by ‘x’ is the seed pixel
currently being examined during a masking
process. The first 12 orientation patterns in
layer S1 of Fig. 4(a) are designed to extract
eight different degree spatial patterns that
correspond to multiples of 45°, 45°, 90°, 135°,
180°, 225°, 270°, 335° and 360°. If there is a
match between an orientation spatial pattern
and a degree spatial pattern, a weight ‘1’ is
assigned; a weight ‘0’, otherwise. For exam-
ple, pattern 1 specifies the East orientation. It
matches all degree spatial patterns except
those representing degrees B45° and 45°. As
a result, in the row of pattern 1, there are two
‘0’s and six ‘1’s. The next eight orientation
spatial patterns in layer S1 from pattern 13 to
pattern 20 are designed to extract degrees
167.5°, 22.5°, 202.5°, 247.5°, 67.5°, 112.5°,
292.5° and 337.5° respectively. Since these

eight patterns describe smaller degrees that
are multiples of 22.5° but not multiples of 45°
that are already specified by the first 12 orien-
tation patters, they are crucial to measure
subtle differences among geometric shape fea-
tures. So, if there is a match, a weight ‘2’ will
be assigned; a weight ‘0’, otherwise. For ex-
ample, pattern 13 matches degree spatial pat-
terns, 225°, 270°, 335°. So, there are three ‘2’s
appearing in the row of pattern 13 under the
columns of degrees, 225°, 270°, 335°. As a
result, a total of 20 256×256 cell planes are
produced in layer S1, each of which repre-
sents a specific orientation spatial pattern
with assigned weights given in Fig. 4(a).
These 20 cell planes will be then input to the
next complex layer C1.

The task of layer C1 is to fuse the shape
orientation information produced by Fig.
4(a) by merging the 20 cell planes generated
in layer S1 into a set of eight cell planes so
that each cell plane in layer C1 represents the
information generated by one specific orien-
tation spatial pattern that corresponds to one
of eight degrees, B45°, 45°, 90°, 135°, 180°,
225°, 270° and 360°. Fig. 4(b) shows how the
eight orientation spatial patterns in layer C1

are generated by merging the 20 orientation
patterns in layer S1 where a merge is de-
scribed by a � . It should be noted that the
weight of a merged pattern is not obtained by
summing all the weights of merging patterns.
Instead, we adopt a rule suggested in [37,41]
that when two patterns are merged, the
higher weight of the pattern will be assigned
to the weight of the resulting pattern ob-
tained by merging these two patterns. Fig.
4(c) shows the weights obtained for these
eight orientation spatial patterns in layer C1

resulting from the merging process shown in
Fig. 4(b). For example, pattern 1 in layer C1

in Fig. 4(b) is a result of merging six patterns
1–4, 14–15 in layer S1 shown in the first row
in Fig. 4(b). Therefore, the weight of the
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Fig. 4. (a) Weight assignments of 20 orientation spatial patterns in layer S1 corresponding to eight-degree spatial
patterns. (b) Eight orientation spatial patterns in layer C1 obtained by merging the 20 orientation spatial patterns in
layer S1. (c) Weight assignments of eight orientation spatial patterns in layer C1 obtained by summing each column
to represent eight-degree spatial patterns corresponding to B45°, 45, 90, 135, 180, 225, 270 and 360°.

degree pattern corresponding to 135° of pat-
tern 1 in layer C1 was obtained by the highest
weight produced by pattern 15 in layer S1,

which was ‘2’ according to Fig. 4(a). As
another example, the weight of the degree
pattern corresponding to 90° of pattern 1 in
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layer C1 was ‘1’ because from Fig. 4(a) the
highest weight among the six merging pat-
terns, 1–4 and 14–15 in layer S1 is ‘1’ pro-
duced by the weight of pattern 1 in layer S1.
Similarly, the weights of the remaining degree
patterns of pattern 1 corresponding to B45°,
180°, 225°, 270° and 360° were obtained by 0,
0, 2, 2, 2, 2 respectively as shown in Fig. 4(c).

The layer following the first (S1,C1) unit is
a 3-D figure layer, which is a shape informa-
tion display layer. It uses a 3-D figure to
represent the shape orientations of an input

pattern in the third dimension, called eleva-
tion. The magnitude of the elevation of each
degree spatial pattern is expressed by the sum
of the weights produced by the eight orienta-
tion patterns in layer C1 that correspond to
this particular degree pattern. For example,
the degree spatial pattern represented by B
45° only matches patterns 2 and 3 in layer C1.
So, the elevation of B45° degree spatial pat-
tern is the sum of the column under B45°
degree spatial pattern, which is 1+1=2.
Similarly, 3, 4, 5, 7, 9, B(11) and C(12) are

Fig. 4. (Continued)
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Fig. 4. (Continued)

obtained for degree spatial patterns corre-
sponding to 45°, 90°, 135°, 180°, 225°, 270°
and 360°.

The second simple-complex layers com-
bined unit, (S2,C2) is a shape feature extrac-
tion-classification unit where layer S2 extracts
and selects an appropriate set of shape fea-
tures for classification and layer C2 performs
classification based on features generated by
layer S2. Layer S2 produces a set of shape
features on the basis of the shape orientation
information provided by the 3-D figure in
3-D figure layer. Each of these features repre-
sents a specific shape characteristic. It should

be noted that layer S2 is very flexible and
varies with feature selections. C2 layer is a
classification layer that employs a probabilis-
tic neural network (PNN) [53] as a classifier.
It takes as input the shape features produced
by layer S2 and its outputs are used for
classification. According to the MCCs assess-
ment categories suggested in [25], five outputs
are used in layer C2, which are ‘negative’ (no
further operation), ‘benign finding’ (MCCs
found to be negative), ‘probably benign find-
ing’ (short interval follow-up suggested), ‘sus-
picious abnormality’ (biopsy should be
considered) and ‘highly suggestive of malig-
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nancy’. Each of these outputs reflects differ-
ent stages of MCCs. It is worth noting that
the number of cell planes in layer C2 is deter-
mined by the number of patterns needed to
be classified or recognized. Because layer C2

can be designed separately, it offers S-Cogni-
tron great flexibility to adapt different appli-
cations. In this paper, a PNN is implemented
to perform classification task. However, a
backpropagation neural network (BNN) can
also be used as was done in [42] to detect the
venous beading in retinal images. In addition,
layer C2 is an application-dependent layer
and can be designed by specific criteria for
classification. For details of S-Cognitron, we
refer to references [38,42].

In summary, S-Cognitron works as fol-
lows. (1) It first takes the clustered MCCs
produced by the MCCs Detection Module as
input patterns in layer U0. (2) It employs the
shape orientation extraction unit (S1,C1) to
extract shape orientations and convert them
to numeric representations. (3) It then dis-
plays the numeric values of shape orienta-
tions in the 3-D figure layer. (4) The shape
feature extraction-classification unit (S2,C2) is
used to extract and select shape features in S2

layer and then classifies clustered MCCs in
layer C2. The outputs of layer C2 produce
five-category classification results for diagno-
sis of the input clustered MCCs. The details
of each layer are described in [42].

3. Experimental results using Nijmegen
database

In order to evaluate the proposed system,
the Nijmegen database was used for experi-
ments. The choice of this database is based
on the availability of the Nijmegen database
in the public domain and biopsy results are
also provided for each case in the database.
There are 40 mammograms from 21 patients

in the Nijmegen database collected by the
Department of Radiology, Nijmegen Univer-
sity Hospital, Netherlands. Each of the mam-
mograms in the database was digitized into
the size of 2048×2048 by an Eikonix 1412
12-bit CCD camera with a fixed calibration.
The maximum output level (4095) corre-
sponds to the optical density 0.18. A sample
aperture of 0.5 mm in diameter and 0.1 mm
sampling distance were used for digitization.
All the mammograms were corrected for in-
homogeneity of the light source (Gordon pla-
nar 1417) and recorded by a Kodak
MINR/SO1777 screen/film combination.
Each mammogram shows one of more clus-
tered MCCs. The 40 mammograms contain a
total of 102 clustered MCCs and the detailed
locations and radii of these clustered MCCs
were also provided by radiologists.

Since the first module is a Mammogram
Preprocessing Module designed to segment
the breast region from the entire mam-
mogram, it has little impact on the system
performance. So, the experiments were spe-
cifically designed to evaluate the performance
for the following three modules, the second
module-MCCs Finder Module, the third
module-MCCs Detection Module and the
fourth module-MCCs Classification Module.
In this case, 104 positive ROIs and 41 nega-
tive ROIs were selected from the Nijmegen
data base where a positive ROI means that it
contains clusters of microcalcifications and a
negative ROI implies that no cluster of mi-
crocalcifications is found in the region.

As noted in the MCCs Finder Module, the
areas of containing suspicious MCCs were
located by the fractal dimension using a 64×
64 window to screen the breast region ex-
tracted by the Mammogram Preprocessing
Module as shown in Fig. 5(a) where the
breast region was divided into blocks of 64×
64 small regions. Then the MCC Finder
Module determined whether or not each
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Fig. 5. (a) Breast regions divided into small blocks with
size 64×64. (b) ROC curve of TPF versus FPF.

5(b) where the detection rate can reach as
high as 90% at the false alarm rate 1%.

To evaluate the performance of the MCCs
Detection Module, here, we adopt the criteria
suggested in [25] to define sensitivity (SS),
specificity (SP) and positive predictive value
(PPV) for performance evaluation. Let Np be
the total number of positive ROIs and Nn be
the total number of negative ROIs. Then we
define TPN to be the number of ROIs that
contains clusters of microcalcifications and
are actually detected, and FPN to be the
number of ROIs that contains no clusters of
microcalcifications but were falsely detected.
Similarly, the true negative number (TNN)
and false negative number (FNN) can be
defined by TNN=Nn−FPN and FNN=
Np−TPN respectively. According to [25], we
can further define sensitivity (SS), specificity
(SP) and positive predictive value (PPV) by
SS=TPN/Np, SP=TNN/Nn, PPV=TPN/
(TPN+FPN) where Np=TPN+FNN=
104 and Nn=TNN+FPN=41. Since the
JRE has been shown more effective than
other thresholding methods in our experi-
ments and also in retinal images in [42], only
the JRE was used for evaluation and com-
pared to Otsu’s method. The detection results
produced by the MCCs Detection Module
are tabulated in Table 1 that shows that JRE
is indeed a better method than Otsu’s
method.

Finally, these detected clustered MCCs
were then fed to the MCCs Classification
Module for benign-malignancy classification.
It should be noted that all the 41 negative

64×64 small region contains MCCs. In or-
der to demonstrate its detection performance,
the receiver operating characteristic (ROC)
analysis was used for performance evaluation
[54,55]. Assume that AMCCs is the area of
blocks that contain MCCs and Anormal is the
area of blocks that contain normal regions.
In addition, we also assume that AD is the
area of blocks detected for MCCs that actu-
ally contain MCCs and AF is the area of
blocks detected for MCCs, but did not have
MCCs. Two criteria were used for evalua-
tion, referred to as true positive fraction
(TPF) and false positive fraction (FPF),
which are defined by TPF=AD/AMCCs and
FPF=AF/Anormal respectively [25]. The ROC
curve of TPF versus FPF was plotted in Fig.

Table 1
Detection results of the MCCs Detection Module using the Nijmegen database

NP Nn TPF FPF PPVTNF FNF SS SP

0.92825169641104JRE 0.61 0.86
104 41 30 14 27 74 0.29Otsu’s method 0.66 0.34
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Table 2
Confusion matrix of the MCCs Detection Module using the Nijmegen databasea

Training cases Negative Benign finding Probably Highly suggestive ofSuspicious
abnormalitybenign malignancy

findingMalignantBenign

7 19 291 13 14 20 28

8 25 162 8 19 27 34

10 31 17 9 83 35 35

a Total cases: 104, benign cases: 29, malignant cases: 75.

ROIs were not included here because they were
filtered out by the second module, MCCs
Finder Module, which located potential posi-
tive ROIs for MCCs while eliminating negative
ROIs that contain no MCCs. As a result, only
104 ROIs needed to be classified. Among these
104 positive ROIs 29 were benign and 75
malignant. Three sets of training data were
selected to evaluate the classification perfor-
mance. The first training data set consists of
seven benign and 19 malignant cases, whereas
the second and third training data sets were
made up of eight benign+25 malignant cases
and ten benign+31 malignant cases, respec-
tively. These training cases were selected from
the 104 ROIs. The resulting confusion matrix
is given in Table 2 where the 104 positive ROIs
were classified according to the following five
categories: ‘negative’, ‘benign finding’, ‘proba-
bly benign finding’, ‘suspicious abnormality’
and ‘highly suggestive of malignancy’. Since
the information provided by the Nijmegen
data base about each cluster of MCCs is based
on its biopsy report, all the clusters of MCCs
in the Nijmegen data base must be classified
into either benign or malignant and cannot be
classified in accordance with five categories
suggested by the MCCs Classification Module.
In this case, we declared a cluster of MCCs to

be malignant only if it fell in the categories of
‘suspicious abnormality’ and ‘highly sugges-
tive of malignancy’; benign, otherwise. That is,
if we let nneg, nbf, npbf, nabn and nhsm denote the
number of ROIs classified to category cate-
gories, ‘negative’, ‘benign finding’, ‘probably
benign finding’, ‘suspicious abnormality’ and
‘highly suggestive of malignancy’ respectively,
the number of cases to be classified to be
benign, denoted by nB is given by nB=nneg+
nbf+nbf, while the number of cases to be
classified to be malignant, denoted by nM is
nM=nabn+nhsm. Using TPN, FPN, TNN and
FNN defined above, we can derive three rates
for system performance evaluation, which are
detection rate (DR) defined by DR=TPN/
(number of maglinant cases), false alarm rate
(FAR) by FAR=FPN/(number of benign
cases) and correct classification rate (CR) by
CR= (TPN+TNN)/(total number of cases).
These results are also tabulated in Table 3. For
example, when the MCCs Classification Mod-
ule was trained by the third training data set,
nneg=17, nbf=9, npbf=8, nabn=35 and
nhsm=35 with nB=34 and nM=70, which
result in TPN=70, FPN=0, TNN=29 and
FNN=5. So, DR=70/75:93%, FAR=0/
29=0% and CR= (70+29)/104:95%.
This experiment showed that if 41 train-
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ing cases were used to test 104 cases, we
could achieve as high as 95% classification
rate with 93% detection rate and 0% false
alarm rate. As we can see from Tables 2 and
3, the more training data that were used, the
better the classification. It is worth noting
that the classification performance is not lin-
early proportional to the number of training
cases used.

The processing time of each module in the
system using PC Pentium 200 MHz is given
in Table 4. From the table, the total amount
of the time required for the entire system to
process the mammogram in Fig. 6(b) is aver-
aged about 72 s.

4. Demonstration of system

In this section, a demonstration of the
system is presented. The system can be run
on a PC platform. Fig. 6(a) shows a system

frame where the larger window, called dis-
play window, is used to display the original
mammogram and a smaller window, called
ROI window, is used to show a particular
ROI that can be selected by the system or
radiologists. There is a tool bar across the
top of the frame. It consists of various func-
tions, ‘File’, ‘Screening’, ‘Sensitivity’, ‘Re-
fresh’, ‘Biopsy’, ‘Image processing’. When
‘File’ is opened, the Mammogram Prepro-
cessing Module (i.e. the first module of the
system) allows users to access the mam-
mogram database stored in the system. As
soon as a mammogram is selected, it will be
shown in the display window in Fig. 6(b)
where the ROI window also shows a ROI
selected by a small movable square window,
called processing window, that is designed to
allow users to select any region of interest in
the ROI window without appealing for the
automatic ‘Screening’. However, when
‘Screening’ is used, the MCCs Finder Module

Table 3
Classification results of Table 2a

TPN FPN DR (%)TNN FNN FAR (%) CR (%)

245431 1757 6432
2 8110771726358

70 950 29 5 933 0

a Total cases: 104, benign cases: 29, malignant cases: 75.

Table 4
Processing time for each module of the system

Mammogram MCCs ClassificationMCCs Detection TotalMCCs Finder
processingModulePreprocessing Module (256×256 Module (256×256
timepixel size perpixel size perModule

cluster) cluster)

37 30Average time 7214
(s)

Variance (s) 1.32.5 8.4 0.1 12.3
17Rate of 7 28 33 10

variance (%)
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Fig. 6. (a) A system frame of the demonstration. (b) A selected mammogram and an ROI shown in the windows

(i.e. the second module of the system) pro-
cesses the selected mammogram in real time.
It automatically locates all suspicious areas of
MCCs as shown in Fig. 7(a). ‘Sensitivity’ can
be implemented in three fashions, ‘Low sensi-
tivity’, ‘Moderate sensitivity’ and ‘High sensi-
tivity’, which are determined by the fractal

dimension D through the scaling factor r in Eq.
(5). They can be used to control the sensitivity
of locating true positive MCCs. When ‘Low
sensitivity’ is selected, it finds all areas of
containing suspicious MCCs that can be easily
located by visual inspection. So, it prod-
uces low false positive rates but may
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Fig. 7. (a) Suspicious MCCs area located by the MCCs Finder Module. (b) Detection result of Fig. 8(a) resulting
from applying the JRE to the image in Fig. 7(a).
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Fig. 8. (a) A representative mammogram from the Nijmegen data base. (b) Background elimination by the block
region growing method. (c) Breast region extracted by the K-means clustering-based thresholding method.

miss many areas of true positive MCCs. By
contrast, when ‘High sensitivity’ is selected,
MCCs that are invisible to human eyes can be
now extracted so as to achieve high true
positive rates. However, this also results in
many unnecessary reviews required for radiol-
ogists. The ‘Moderate sensitivity’ is a compro-
mise between ‘low sensitivity’ and ‘high
sensitivity’. ‘Refresh’ is simply to clear previ-
ous identified suspicious areas. ‘Biopsy’ gives
the true diagnosis of the MCCs in the ROI
window. ‘Image processing’ provides several
functions, ‘Detection’, ‘Classification’, ‘Train-
ing’, ‘Save’ and ‘Copy’. When ‘Detection’ is
used, the MCCs Detection Module (i.e. the
third module of the system) is activated. In this

case, the users need to select a particular
thresholding method to segment clustered
MCCs from the background as shown in the
upper right ROI window of Fig. 7(b). ‘Classifi-
cation’ classifies a cluster of detected MCCs
into five categories: ‘Negative’, ‘Benign find-
ing’, ‘Probably benign finding’, ‘Suspicious
abnormality’, ‘Highly suggestive of malig-
nancy’ (see the right bottom of Fig. 11). The
three functions ‘Training’, ‘Save’ and ‘Copy’
are yet to be developed but will be included for
future reporting and data system.

In order to demonstrate how the entire
system works module by module, a representa-
tive mammogram shown in Fig. 8(a) was
selected from the Nijmegen database to eval-
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uate each of the modules implemented in the
system. As we can see, approximately half of
the mammogram is the breast background. It
provides very little diagnostic information ex-
cept for the letter ‘R’ that indicates the right
breast. Fig. 8(b)–(c) is the result of the first
module, Mammogram Preprocessing Module
where Fig. 8(b)–(c) were obtained by steps
1–2 and step 3 in the Breast Extraction Al-
gorithm respectively. Step 1 divided the
mammogram into a set of image blocks of
size 64×64 and step 2 applied a block region
growing method with the threshold set to
To=15 to eliminate the breast background.
Step 3 used K-means clustering method to
refine the breast estimate in Fig. 8(b). The
result is shown in Fig. 8(c) where three re-
gions were classified, C0 corresponded to the
breast background, C2 extracted the full
breast and C1 was the breast boundary delin-
eated by the bright contour.

After the breast region was extracted, it
was fed to the second module, MCCs Finder
Module, to locate and extract suspicious ar-

Fig. 10. (a) Image resulting from applying the gradient
enhancement to Fig. 9. (b) Image resulting from apply-
ing the contrast enhancement to Fig. 10(a). (c) Image
resulting from applying the Gaussian filtering to Fig.
10(b).

Fig. 9. Image resulting from applying blanket method
to the image in Fig. 8(c).

eas of MCCs. Fig. 9 is the result of applying
the blanket method to the image in Fig. 8(c)
where a suspicious cluster of MCCs was lo-
cated and marked by a circle. This clustered
MCCs was further fed to the third module,
MCCs Detection Module.

Fig. 10(a)–(c) were the results produced by
applying steps 1–4 respectively in the MCCs
Detection Algorithm to Fig. 9 where the left
column shows the full image while the right
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column shows only ROI for better illustra-
tion. Fig. 10(a) enhanced the pixels with high
intensities and Fig. 10(b) improved their rela-
tive contrast with m=2. Since some pixels
that are not calcified might also be enhanced
by the gradient enhancement, the contrast
improvement allowed us to eliminate these
pixels by Gaussian filtering as shown in Fig.
10(c). This is because the pixels surrounding
uncalcified pixels will bring down the con-
trast while the pixels surrounding calcified
pixels will bring up the contrast. The upper
right ROI window of Fig. 11 shows the detec-
tion result of Fig. 10(c) segmented by the
JRE.

Finally, the clustered MCCs was classified
by the fourth classification module, MCCs
Classification Module into the category
‘Highly suggestive of malignancy’ as shown
in the right bottom of Fig. 11 where the
circled area in the left display window of Fig.

9 is the biopsy report provided by the Nijme-
gen database and is indeed malignant.

5. Conclusion

In this paper, we present a prototype of a
computer-aided design mammography
screening system. The initial development of
this system began in 1995 under a pilot pro-
ject funded by TCVGH over the past years.
It is the result of a multi-year effort led by
the Department of Radiology in TCVGH.
The third MCCs Detection Module was first
developed to assist radiologists to improve
their diagnosis in detection of MCCs. As the
progress evolved, the classification of clus-
tered MCCs immediately became indispens-
able. This need resulted in the fourth MCCs
Classification Module to classify clustered
MCCs. In order to make the system fully

Fig. 11. Detection and classification results of Fig. 10(c).
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computer automated, the second MCCs
Finder Module was then developed to auto-
matically locate suspicious areas for possible
MCCs, a task usually done by radiologists’
visual inspection. Finally, to integrate these
three modules in the existing PACS in
TCVGH, it required a computer graphics
interface and a build-up of mammogram
database for storage and fast retrieval. To
meet this challenge, the first Mammogram
Preprocessing Module was further developed
for this purpose. The system has been evalu-
ated by radiologists in TCVGH and other
hospitals in Taiwan as each module was de-
veloped. A demonstration version of the sys-
tem was also prepared for radiologists in
Taiwan who would like to participate in our
project. The feedback received from radiolo-
gists was used to further improve the system.
Although the present system is still a proto-
type and requires many more clinical trials,
its open architecture offers great flexibility. It
enables the system to upgrade its individual
module as well as to add new modules to
make the system more reliable and adapt
rapid changing computer environment. It
should be noted that the system presented in
this paper is only a trial clinical system. The
techniques used in each module can be fur-
ther improved or replaced if there exist more
effective methods. For example, a module for
mass detection currently being investigated in
TCVGH can be added to the system as a
companion module of the MCCs Detection
Module since the techniques used to detect
MCCs are generally different and cannot be
used for mass detection. Another important
module yet to develop for our proposed sys-
tem is a reporting and data system module. It
will be based on the BI-RADS (Breast Imag-
ing Reporting and Data System) format rec-
ommended by the American College of
Radiology [25]. It will allow doctors to pre-
pare their reports and can be also used for

purpose of training and future pathology. We
anticipate that this module will require a
large database build-up as well as an exten-
sive study that includes various statistical
tests and tedious book-keeping data analysis.
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